所以,天線的第一個作用就是輻射和接收電磁波。當然能輻射或接收電磁波的東西不一定都能用來作為天線。
天線的另一個作用是”能量轉換”。大家知道,發信機通過饋線送入天線的并不是無線電波,收信天線也不能直接把無線電波送入收信機,這里有一個能量的轉換過程,即把發信機所產生的高頻振蕩電流經饋線送入天線輸入端,天線要把高頻電流轉換為空間高頻電磁波,以波的形式向周圍空間輻射。反之在接收時,也是通過收信天線把截獲的高頻電磁波的能量轉換成高頻電流的能量后,再送給收信機。顯然這里有一個轉換效率問題。天線增益越高,則轉換效率就越高。
一、 移動基站天線的發展史
從2G到4G,移動基站天線經歷了全向天線、定向單極化天線、定向雙極化天線、電調單極化天線、電調雙極化天線、雙頻電調雙極化到多頻雙極化天線,以及MIMO天線、有源天線等過程。
而隨著4G和5G時代的到來,BBU和RRH分離,Massive MIMO技術的引入,總的來說,基站天線的發展出現了三個趨勢:
1)無源天線向有源天線發展
2)光纖替代饋線
3)RRH和天線部分集成
從另一個視角看,陣列天線、多頻段天線、多波束天線構成了基站天線發展的“魔術三角”。
Massive MIMO
基站端裝備大規模天線陣列,利用多根天線形成的空間自由度及有效的多徑分量,提高系統的頻譜利用效率。
多波束天線
運用多波束天線使扇區分裂來提升容量,比如2 x 9 x 6°的18波束天線。
2G到4G基站天線發展
2G/3G時代,天線多為2端口。
GSM天線
CDMA天線
LTE-FDD 獨立2端口天線(2T2R)
到了4G時代,隨著MIMO技術、多頻段天線的大量使用,我們看到,鐵塔上天線就像是長出了大胡子。
LTE-FDD 獨立4端口天線(2T4R)
CDMA(1T2R)/LTE-FDD(2T4R) 6端口雙頻天線
LTE-TDD 8T8R 8端口天線
再加上鐵塔上的RRU,鐵塔上的場面就相當壯觀…
二、電磁波傳播基礎知識
無線電波的定義
無線電波是一種信號和能量的傳播形式,在傳播過程中,電場和磁場在空間中相互垂直,且都垂直于傳播方向。
無線電波的傳播方向
正交特性;電生磁、磁生電。
無線電波的波長、頻率與傳播速度的關系
其中:波長 λ= C/f (式中,C為光速,f為工作頻率,λ為波長。)
在相同的介質中,不同頻率下,天線的工作波長不同。頻率越高,波長越短。
天線的電性能與電長度(波長)對應。物理長度則需要進行換算。
無線電波的極化
無線電波在空間傳播時,其電場方向是按一定的規律而變化的,這種現象稱為無線電波的極化。無線電波的極化是由電場矢量在空間運動的軌跡確定的。如果電波的電場方向垂直于地面,我們就稱它為垂直極化波。如果電波的電場方向與地面平行,則稱為水平極化波。
圓極化 <— 橢圓極化 —>線極化
左旋、右旋;垂直、水平
天線極化
是指電場矢量在空間運動的軌跡。
雙極化天線
由兩組正交的輻射單元組成。
1)互補(完備不相關。正交/90度)(規劃工作)
2)相當(平衡工作。+45/-45) (勝任工作)
3)高效(XPD 降低損耗) (專注工作)
多徑傳播
電波在傳播過程中,除直接傳播外,遇到障礙物(例如,山丘、森林、地面或樓房等高大建筑物),還會產生反射和繞射。因此,到達接收天線的電磁波,不僅有直射波,還有反射波,繞射波、透射波,這種現象就叫多徑傳輸。
由于多徑傳播使得信號場強分布復雜化,波動很大;也由于多徑傳輸的影響,會使電波的極化方向發生變化(扭轉),因此,有的地方信號場強增強,有的地方信號場強減弱,另外,不同的障礙物對電波的反射能力也不同 。為降低多徑傳輸效應的影響,一般采用空間分集或極化分集來接收。
空間分集:單極化天線
極化分集:雙極化天線
三、天線輻射原理
天線的定義
能夠有效地向空間某特定方向輻射電磁波或能夠有效地接收空間某特定方向來的電磁波的裝置。
天線半波振子
半波振子是天線的基本輻射單元,波長越長,天線半波振子越大。
半波振子示例:
天線輻射方向圖
用來表述天線在空間各個方向上所具有的發射和接收電磁波的能力。一般為三維輻射立體圖。
實際評判中是其轉化成的二維平面圖形,即水平面方向圖及垂直面方向圖。
天線組成部件
同一款基站天線有多種設計方案來實現。設計方案涉及到天線的以下四部分:
1)輻射單元(對稱振子 or 貼片[陣元])
2)反射板(底板)
3)功率分配網絡(饋電網絡)
4)封裝防護(天線罩)